An Efficient Filtering Structure for Lagrange Interpolation
نویسندگان
چکیده
منابع مشابه
On Multivariate Lagrange Interpolation
Lagrange interpolation by polynomials in several variables is studied through a finite difference approach. We establish an interpolation formula analogous to that of Newton and a remainder formula, both of them in terms of finite differences. We prove that the finite difference admits an integral representation involving simplex spline functions. In particular, this provides a remainder formul...
متن کاملBarycentric Lagrange Interpolation
Barycentric interpolation is a variant of Lagrange polynomial interpolation that is fast and stable. It deserves to be known as the standard method of polynomial interpolation.
متن کاملIntertwining unisolvent arrays for multivariate Lagrange interpolation
Let Pd(C ) denote the space of polynomials of degree at most d in n complex variables. A subset X of C – we will usually speak of configuration or array – is said to be unisolvent for Pd(C ) (or simply unisolvent of degree d) if, for every function f defined on X there exists a unique polynomial P ∈ Pd(C ) such that P(x) = f (x) for every x ∈ X. This polynomial is called the Lagrange interpolat...
متن کاملOn Boundedness of Lagrange Interpolation
We estimate the distribution function of a Lagrange interpolation polynomial and deduce mean boundedness in Lp; p < 1: 1 The Result There is a vast literature on mean convergence of Lagrange interpolation, see [4{ 8] for recent references. In this note, we use distribution functions to investigate mean convergence. We believe the simplicity of the approach merits attention. Recall that if g : R...
متن کاملConvergence of Extended Lagrange Interpolation
The authors give a procedure to construct extended interpolation formulae and prove some uniform convergence theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2007
ISSN: 1070-9908
DOI: 10.1109/lsp.2006.881528